Formation of bicalutamide nanodispersion for dissolution rate enhancement.

نویسندگان

  • Chan Li
  • Caixia Li
  • Yuan Le
  • Jian-Feng Chen
چکیده

Bicalutamide was loaded on hydrophilic excipients to form nanodispersions via a combination of anti-solvent precipitation and spray drying method. The particle size, BET surface area, contact angles and dissolution rate of the nanodispersions were analyzed. The results indicated that lactose was a suitable matrix to prevent the bicalutamide particles growth and aggregation. The lactose loaded particles had a mean size of 330 nm within a narrow distribution. X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) characterization indicated the nanodispersion exhibited unchanged crystalline and chemical structure. Dissolution rate of bicalutamide nanodispersion was significantly faster than that of commercial products. It increased to 94% in 10 min while both commercial formulas Casodex and bicalutamide tablets dissolved 60% and 38% respectively at the same period. It was proposed that the enhanced dissolution rate of bicalutamide nanodispersion contribute to high surface area and well-wetted state of drug particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation

Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight rati...

متن کامل

Dissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation

Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight rati...

متن کامل

Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow ...

متن کامل

Aripiprazole-Cyclodextrin Binary Systems for Dissolution Enhancement: Effect of Preparation Technique, Cyclodextrin Type and Molar Ratio

  Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility.   Materials and Methods: Phase solubility of ar...

متن کامل

Enhancement of Dissolution Rate of Indomethacin Using Liquisolid Compacts

The potential of liquisolid systems to improve the dissolution properties of a water-insoluble agent (indomethacin) was the purpose of this survey. In this study, different formulations of liquisolid tablets using different co-solvents (non-volatile solvents) were prepared and the effect of several amounts of them on the dissolution behaviour of indomethacin was investigated. It is worth mentio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 404 1-2  شماره 

صفحات  -

تاریخ انتشار 2011